Faculty Profile


Lu Hu

Lu Hu

Assistant Professor of Environmental & Analytical Chemistry

Email: lu.hu@mso.umt.edu
Office: Chemistry 013A
Personal Website

Personal Summary

Hu group is hiring! Two graduate assistantships are open for Fall 2019. Please send your CV and a brief statement of interest to Dr. Hu if you are interested.

Dr. Lu Hu joined the University of Montana as an assistant professor in 2017. Before UM, Lu obtained his Ph.D. at the University of Minnesota in 2014, and then completed postdoc training at Harvard University. He went to college in Beijing and experienced serious air pollution issues. Since then he has determined to study atmospheric chemistry and contribute scientific knowledge for people to achieve and breathe clean air.

Learn more about the UM Environmental/Analytical Chemistry program

Education

Postdoctoral: Harvard University

Ph.D.: University of Minnesota – Twin Cities

M.S.:  Institute of Geochemistry Chinese Academy of Sciences

B.S.:   China University of Geosciences, Beijing

Research Interests

Dr. Hu's group is a joint experimental and modeling research program studying atmospheric organic chemistry and air pollution. The overarching goal is to improve understanding of the chemical composition of the atmosphere and how it is influenced by human activities and natural processes. His research group uses a combination of field observations, satellite data, and atmospheric modeling to investigate the origins, chemistry, and transport of volatile organic compounds (VOCs), and their implications for air quality and climate locally and globally. Current projects focus on global tropospheric ozone budgets, long-term changes of trace gases in the atmosphere, land-atmosphere exchange of organic carbon. More information can be found on his group website at hs.umt.edu/luhu/.

Projects

Current projects:

  • Emission and chemistry of wildfires
  • Factors controlling global tropospheric ozone
  • Atmospheric chemistry and biogenic VOCs in the changing Arctic

Dr. Hu’s group is currently setting up supercomputing capabilities at National Center Atmospheric Research’s Cheyenne high-performance cluster, for big data analysis and global chemical transport modeling. The initial modeling project is to study the impacts of oil and gas activities over the U.S. on the ambient air toxics levels such as benzene, a known carcinogen.

Two other on-going projects, both funded through the National Science Foundation, will bring Dr. Hu and his group to some sensitive areas vulnerable to enhanced air pollutants. In 2019, his group will go to Alaska North Slope for a field study to investigate the influence of Arctic warming on atmospheric oxidant chemistry through anticipated increasing emissions of biogenic volatile organic compounds from the tundra. In 2018, Dr. Hu's group will partner with four other universities and NSF NCAR, and will spend more than 100 hours inside a flying research aircraft to sample and study the emission and chemistry of Western U.S. wildfire plumes. One state-of-the-art instrument Dr. Hu brought to this collaborative airborne field campaign is a proton transfer reaction time-of-flight mass spectrometer, which measures the full mass spectrum of volatile organic compounds in real time at 10 Hz. This instrument just completed testing in the NSF NCAR C130 aircraft, getting ready to fly straight into wildfire smokes in 2018 summer, and will help answer questions like how chemical processes in fire plumes affect air quality, nutrient cycles, weather, climate and the health of millions of people exposed to smoke in the Western U.S.

Field of Study

Air quality and atmospheric chemistry; Biosphere-atmosphere interactions; Volatile organic compounds (VOCs); Ozone; Aerosol; Source attribution of air toxics; Chemical transport modeling at regional and global scales; Field observations; Mass spectrometry

Selected Publications

See http://www.hs.umt.edu/luhu/ for the full list.

Hu, L., C. A. Keller, M. S. Long, T. Sherwen, B. Auer, A. Da Silva, J. E. Nielsen, S. Pawson, M. A. Thompson, A. L. Trayanov, K. R. Travis, S. K. Grange, M. J. Evans, and D. J. Jacob, Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth System Model (GEOS-5 ESM), Geosci. Model Dev., in press, 2018.

Yan, Y., Cabrera-Perez, D., Lin, J., Pozzer, A., Hu, L., Millet, D. B., Porter, W. C., and Lelieveld, J.: Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-196, in review, 2018.

Young, P.J., Naik, V., Fiore, A.M., Gaudel, A., Guo, J., Lin, M.Y., Neu, J., Parrish, D., Reider, H.E., Schnell, J.L., Tilmes, S., Wild, O., Zhang, L., Brandt, J., Delcloo, A., Doherty, R.M., Geels, C., Hegglin, M., Hu, L., Im, U., Kumar, R., Luhar, A., Murray, L., Plummer, D., Rodriguez, J., Saiz-Lopez, A., Schultz, M.G., Woodhouse, M., Zeng, G., Ziemke (2018), Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends, Elem. Sci. Anth., 6(1):10, doi: https://doi.org/10.1525/elementa.265.

Hu, L., D.J. Jacob, X. Liu, Y. Zhang, L. Zhang, P.S. Kim, M.P. Sulprizio, R.M. Yantosca (2017), Global budget of tropospheric ozone: evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations, Atmos. Environ., 167, 323-334, doi: 10.1016/j.atmosenv.2017.08.036 [Supplement]. [Featured at NASA website for Aura Science]

Zhu, L., L. J. Mickley, D. J. Jacob, E. A. Marais, J. Sheng, L. Hu, G. González Abad, and K. Chance (2017), Long-term (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds, Geophys. Res. Lett., 44, 7079–7086, doi:10.1002/2017GL073859 [Supplement].

Weimer, M., J. Schröter, J. Eckstein, K. Deetz, M. Neumaier, G. Fischbeck, L. Hu, D.B. Millet, D. Rieger, H. Vogel, B. Vogel, T. Reddmann, O. Kirner, R. Ruhnke, and P. Braesicke (2017), An emission module for ICON-ART 2.0: Implementation and simulations of acetone, Geosci. Model Dev., 10, 2471-2494, https://doi.org/10.5194/gmd-10-2471-2017 [Supplement].

Millet, D. B., M. Baasandorj, L. Hu, D. Mitroo, J. Turner, B. J. Williams (2016), Nighttime chemistry and morning isoprene can drive daytime ozone downwind of a major deciduous forest, Environ. Sci. Technol., 50, 4335-4342, doi:10.1021/acs.est.5b06367 [Supplement].

Schmidt, J. A., D. J. Jacob, H. Horowitz, L. Hu, T. Sherwen, M. Evans, Q. Liang, R. Suleiman, D. Oram, M. Le Breton, C. Parcival, S. Wang, B. Dix, and R. Volkamer (2016), Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury, J. Geophys. Res. 121, 11819–11835, doi:10.1002/2015JD024229 [Supplement].

Yan, Y.-Y., J.-T. Lin, J. Chen, L. Hu (2016), Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system, Atmos. Chem. Phys., 16, 2381-2400, doi:10.5194/acp-16-2381-2016.

Hu, L., D.B. Millet, M. Baasandorj, T.J. Griffis, K.R. Travis, C. Tessum, J. Marshall, W.F. Reinhart, T. Mikoviny, M. Müller, A. Wisthaler, M. Graus, C. Warneke, and J. de Gouw (2015a), Emissions of C6-C8 aromatic compounds in the United States: Constraints from tall tower and aircraft measurements, J. Geophys. Res., 120, 826-842, doi:10.1002/2014JD022627 [Supplement]. [Highlighted on the cover of the JGR-Atmosphere]

Hu, L., D.B. Millet, M. Baasandorj, T.J. Griffis, P. Turner, D. Helmig, A.J. Curtis, J. Hueber (2015b), Isoprene emissions and impacts over an ecological transition region in the US Upper Midwest inferred from tall tower measurements, J. Geophys. Res., 120, 3553-3571, doi:10.1002/2014JD022732 [Supplement].

Baasandorj, M., D.B. Millet, L. Hu, D. Mitroo, and B.J. Williams (2015), Measuring acetic and formic acid by Proton Transfer Reaction-Mass Spectrometry: Sensitivity, humidity dependence, and quantifying interferences, Atmos. Meas. Tech., 8, 1301-1321.

Millet, D.B., M. Baasandorj, D.K. Farmer, J.A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J.A. de Gouw, M. Graus, L. Hu, A. Koss, B.H. Lee, F.D. Lopez-Hilfiker, J.A. Neuman, F. Paulot, J. Peischl, I.B. Pollack, T.B. Ryerson, C. Warneke, B.J. Williams, and J. Xu (2015), A large and ubiquitous source of atmospheric formic acid, Atmos. Chem. Phys., 15, 6283-6304.

Teaching Experience

Spring 2019 - CHMY 291 Chemistry of the Environment

Fall 2018 - CHMY 595 Atmospheric Chemistry (with an aircraft observation component, featured by this UM news release)

Spring 2018 - CHMY 421 Advanced Instrumental Analysis

Spring 2017 - CHMY 541 Environmental Chemistry (co-teaching with Dr. Chris Palmer)