Faculty Profile

Lu Hu

Lu Hu

Assistant Professor of Environmental & Analytical Chemistry

Email: lu.hu@mso.umt.edu
Office: Chemistry 013A
Personal Website


Fall 2018 - CHMY 595 Atmospheric Chemistry

Spring 2018 - CHMY 421 Advanced Instrumental Analysis

Spring 2017 - CHMY 541 Environmental Chemistry (co-teaching with Dr. Chris Palmer)

Personal Summary

Dr. Lu Hu joined the University of Montana as an assistant professor in January 2017. Prior to UM, Lu obtained his Ph.D at the University of Minnesota in 2014, and then completed postdoc training at Harvard University. He went to college in Beijing and experienced serious air pollution issues. Since then he has determined to study atmospheric chemistry and contribute scientific knowledge for people to achieve and breathe clean air.


B.S.:   China University of Geosciences, Beijing

M.S.:  Institute of Geochemistry Chinese Academy of Sciences

Ph.D: University of Minnesota – Twin Cities

Postdoctoral: Harvard University

Research Interests

Hu group is hiring! Graduate assistantships are open for Fall 2018. Please email Prof. Hu if you are interested.

Dr. Hu's group is a joint experimental and modeling research program studying atmospheric chemistry and air pollution. The overarching goal is to improve understanding of the chemical composition of the atmosphere and how it is influenced by human activities and natural processes. His research group uses a combination of field observations, satellite data, and atmospheric modeling to investigate the origins, chemistry, and transport of key air pollutants such as ozone (O3) and particulate matter (PM), and their implications for air quality and climate locally and globally. Current projects focus global tropospheric ozone budgets, long term changes of trace gases in the atmosphere, land-atmosphere exchange of organic carbon. More information can be found at his group website at hs.umt.edu/luhu/.


Current projects:

  • Emission and chemistry of wildfires
  • Factors controlling global tropospheric ozone
  • Atmospheric chemistry in changing Arctic

Dr. Hu’s group is currently setting up supercomputing capabilities at National Center Atmospheric Research’s Cheyenne high-performance cluster, for big data analysis and global chemical transport modeling. The initial modeling project is to study the impacts of oil and gas activities over the U.S. on the ambient air toxics levels such as benzene, a known carcinogen.

Two other on-going projects, both funded through National Science Foundation, will bring Dr. Hu and his group to some sensitive areas vulnerable to enhanced air pollutants. In 2019, his group will go to Alaska North Slope for a field study to investigate the influence of Arctic warming on atmospheric oxidant chemistry through anticipated increasing emissions of biogenic volatile organic compounds from tundra. In 2018, Dr. Hu's group will partner with four other universities and NSF NCAR, and will spend more than 100 hours inside a flying research aircraft to sample and study the emission and chemistry of Western U.S. wildfire plumes. One state-of-the-art instrument Dr. Hu brought to this collaborative airborne field campaign is a proton transfer reaction time-of-flight mass spectrometer, which measures the full mass spectrum of volatile organic compounds in real time at 10 Hz. This instrument just completed testing in the NSF NCAR C130 aircraft, getting ready to fly straight into wildfire smokes in 2018 summer, and will help answer questions like how chemical processes in fire plumes affect air quality, nutrient cycles, weather, climate and the health of millions of people exposed to smoke in the Western U.S.

Field of Study

Air quality and atmospheric chemistry; Biosphere-atmosphere interactions; Volatile organic compounds (VOCs); Ozone; Aerosol; Source attribution of air toxics; Chemical transport modeling at regional and global scales; Field observations; Mass spectrometry

Selected Publications

See http://www.hs.umt.edu/luhu/ for the full list.

Hu, L., D.J. Jacob, X. Liu, Y. Zhang, L. Zhang, P.S. Kim, M.P. Sulprizio, R.M. Yantosca (2017), Global budget of tropospheric ozone: evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations, Atmos. Environ., 167, 323-334, doi: 10.1016/j.atmosenv.2017.08.036

Millet, D. B., M. Baasandorj. L. Hu, D. Mitroo, J. Turner, B. J. Williams, Nighttime chemistry and morning isoprene can drive daytime ozone downwind of a major deciduous forest, Environ. Sci. Technol., 50, 4335-4342

Schmidt, J. A., D. J. Jacob, H. Horowitz, L. Hu, T. Sherwen, M. Evans, Q. Liang, R. Suleiman, D. Oram, M. Le Breton, C. Parcival, S. Wang, B. Dix, and R. Volkamer, Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury, J. Geophys. Res. 121, 11819–11835

Yan, Y.-Y., J.-T. Lin, J. Chen, L. Hu (2016), Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system, Atmos. Chem. Phys., 16, 2381-2400

Hu, L., D.B. Millet, M. Baasandorj, T.J. Griffis, K.R. Travis, C. Tessum, J. Marshall, W.F. Reinhart, T. Mikoviny, M. Müller, A. Wisthaler, M. Graus, C. Warneke, and J. de Gouw (2015a), Emissions of C6-C8 aromatic compounds in the United States: Constraints from tall tower and aircraft measurements, J. Geophys. Res., 120, 826-842.

Hu, L., D.B. Millet, M. Baasandorj, T.J. Griffis, P. Turner, D. Helmig, A.J. Curtis, J. Hueber (2015b), Isoprene emissions and impacts over an ecological transition region in the US Upper Midwest inferred from tall tower measurements, J. Geophys. Res., 120, 3553-3571

Baasandorj, M., D.B. Millet, L. Hu, D. Mitroo, and B.J. Williams (2015), Measuring acetic and formic acid by Proton Transfer Reaction-Mass Spectrometry: Sensitivity, humidity dependence, and quantifying interferences, Atmos. Meas. Tech., 8, 1301-1321.

Millet, D.B., M. Baasandorj, D.K. Farmer, J.A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J.A. de Gouw, M. Graus, L. Hu, A. Koss, B.H. Lee, F.D. Lopez-Hilfiker, J.A. Neuman, F. Paulot, J. Peischl, I.B. Pollack, T.B. Ryerson, C. Warneke, B.J. Williams, and J. Xu (2015), A large and ubiquitous source of atmospheric formic acid, Atmos. Chem. Phys., 15, 6283-6304.