The Montana Mathematics Enthusiast

Monograph 4

Creativity, Giftedness, and Talent Development in Mathematics
INTERNATIONAL CONTRIBUTING EDITORS
AND EDITORIAL ADVISORY BOARD

Miriam Amit, Ben-Gurion University of the Negev, Israel
Ziya Argun, Gazi University, Turkey
Ahmet Arikan, Gazi University, Turkey
Astrid Beckmann, University of Education, Schwäbisch Gmünd, Germany
John Berry, University of Plymouth, UK
Morten Blomhøj, Roskilde University, Denmark
Robert Carson, Montana State University-Bozeman, USA
Moham Chinnappan, University of Wollongong, Australia
Constantinos Christou, University of Cyprus, Cyprus
Bettina Dahl Sondergaard, University of Aarhus, Denmark
Helen Doerr, Syracuse University, USA
Ted Eisenberg, Ben-Gurion University of the Negev, Israel
Lyn D. English, Queensland University of Technology, Australia
Paul Ernest, University of Exeter, UK
Viktor Freiman, Université de Moncton, Canada
Brian Greer, Portland State University, USA
Eric Gutstein, University of Illinois-Chicago, USA
Marja van den Heuvel-Panhuizen, University of Utrecht The Netherlands
Gabriele Kaiser, University of Hamburg, Germany
Libby Knott, The University of Montana, USA
Tinne Hoff Kjeldsen, Roskilde University, Denmark
Jean-Baptiste Lagrange, IUFM-Reims, France
Stephen Lerman, London South Bank University, UK
Frank Lester, Indiana University, USA
Richard Lesh, Indiana University, USA
Luis Moreno-Armella, University of Massachusetts-Dartmouth
Claus Michelsen, University of Southern Denmark, Denmark
Michael Mitchelmore, Macquarie University, Australia
Nicholas Mousoulides, University of Cyprus, Cyprus
Swapna Mukhopadhyay, Portland State University, USA
Norma Presmeg, Illinois State University, USA
Gudbjorg Palsdottir, Iceland University of Education, Iceland
Michael Pyryt, University of Calgary, Canada
Demetra Pitta Pantazi, University of Cyprus, Cyprus
Linda Sheffield, Northern Kentucky University, USA
Olof Bjorg Steinthorsdottir, University of North Carolina–Chapel Hill, USA
Günter Törner, University of Duisburg-Essen, Germany
Renuka Vithal, University of KwaZulu-Natal, South Africa
Dirk Wessels, Unisa, South Africa
Nurit Zehavi, The Weizmann Institute of Science, Rehovot, Israel
The Montana Mathematics Enthusiast

Monograph 4

Creativity, Giftedness, and Talent Development in Mathematics

Edited by

Bharath Sriraman

The University of Montana

INFORMATION AGE PUBLISHING, INC.
Charlotte, NC • www.infoagepub.com
CONTENTS

Preface: Creativity, Giftedness, and Talent Development in Mathematics ... vii

Bharath Sriraman

1 The Characteristics of Mathematical Creativity 1

Bharath Sriraman

2 Mathematical Giftedness, Problem Solving and the Ability to Formulate Generalizations: The Problem-Solving Experiences of Four Gifted Students ... 33

Bharath Sriraman

3 Gifted Ninth Graders’ Notions of Proof: Investigating Parallels in Approaches of Mathematically Gifted Students and Professional Mathematicians ... 61

Bharath Sriraman

4 Are Mathematical Giftedness and Mathematical Creativity Synonyms?: A Theoretical Analysis of Constructs 85

Bharath Sriraman

5 Does Mathematics Gifted Education Need a Working Philosophy of Creativity? ... 113

Viktor Freiman and Bharath Sriraman

6 Designing Opportunities for All Students to Demonstrate Mathematical Prowess ... 133

Sylvia Bulgar

7 Problems to Discover and to Boost Mathematical Talent in Early Grades: A Challenging Situations Approach 155

Viktor Freiman
CONTENTS

8 Mathematical Problem Solving Processes of Thai Gifted Students ... 185
Supattra Pattivisan and Margaret L. Niess

9 Knowledge as a Manifestation of Talent: Creating Opportunities for the Gifted... 209
Alexander Karp

10 An Ode to Imre Lakatos: Or Quasi-Thought Experiments to Bridge the Ideal and Actual Mathematics Classrooms 225
Bharath Sriraman

11 The Mathematically Gifted Korean Elementary Students’ Revisiting of Euler’s Polyhedron Theorem......................... 251
Jaehoon Yim, Sanghun Song, and Jiwon Kim

12 Mathematically Promising Students from the Space Age to the Information Age ... 271
Linda Jensen Sheffield

13 Revisiting the Needs of the Gifted Mathematics Students: Are Students Surviving or Thriving? 277
Alan Zollman

14 Playing with Powers .. 287
Bharath Sriraman and Pawel Strzelecki
Our innovative spirit and creativity lies beneath the comforts and security of today’s technologically evolved society. Scientists, inventors, investors, artists and leaders play a vital role in the advancement and transmission of knowledge. Mathematics, in particular, plays a central role in numerous professions and has historically served as the gatekeeper to numerous other areas of study, particularly the hard sciences, engineering and business. Mathematics is also a major component in standardized tests in the United States, and in university entrance exams in numerous parts of world.

Creativity and imagination is often evident when young children begin to develop numeric and spatial concepts, and explore mathematical tasks that capture their interest. Creativity is also an essential ingredient in the work of professional mathematicians. Yet, the bulk of mathematical thinking encouraged in the institutionalized setting of schools is focused on rote learning, memorization, and the mastery of numerous skills to solve specific problems prescribed by the curricula or aimed at standardized testing.
My foray into creativity and giftedness began as a school district coordinator of the gifted program in a public school district in Illinois. During this time I was mentored by Professor Robert Wheeler at Northern Illinois University, who shared my interest in the construct of creativity. Several seminars led us into the considerable body of literature on creativity and I naturally wanted to empirically test things out in the classroom. In the public school setting, I tried out many innovative things like integrating science, philosophy and literature with mathematics; conducting teaching experiments with problems that were isomorphic in structure and studying whether students were able to discover generalizations via this process, as well as studies aimed at the insights of mathematicians and gifted students on proof and the nature of creativity in mathematics. Several of the chapters in this book are based on critically peer-reviewed published articles arising from these studies. I also had the good fortune of having the support of Harry Adrian, a teacher of philosophy and great ideas who helped me learn the logistical and practical aspects of operating a functional and equitable gifted program in a public school district. My scholarly interest in the field also grew as a result of serendipity—i.e., meeting Paula Olszewski-Kubilius at the State of Illinois gifted conference at Pheasant Run, St. Charles, Illinois in 2000. Paula encouraged me to read the research literature in journals and to start writing and publishing the findings of my research in gifted education journals.

It is difficult to believe that eight years later, many of the research studies that I initiated and published on are receiving wide citations and are also being extended and carried out by scholars in other countries. The chapter by Supattra Pativisan which examines the problem solving abilities of Thai gifted students (Chapter 8) is an extension and a more detailed examination of the ideas found in the chapter entitled Mathematical giftedness, problem-solving and the ability to formulate generalizations (Chapter 2). Similarly Chapter 11 by Yim, Song, and Kim on Mathematically gifted Korean elementary students’ revisiting of Euler’s polyhedron theorem, is a practical study inspired by my (audacious) theorization of the possibilities of implementing Lakatosian methods in the classroom (in Chapter 10) based on my results of classroom based studies.

The monograph also contains chapters from Viktor Freiman and Alexandar Karp, scholars who have an insiders perspective on the models of talent development used in the former Soviet Union. In addition the chapters by Sylvia Bulgar, Alan Zollman and Linda Sheffield present a complementary discussion of the issues surrounding mathematics gifted education in the United States. The sheer range of perspectives presented in the chapters and the geographic diversity of the author’s backgrounds makes the monograph truly international in its scope.
Given the lack of research based perspectives on talent development in mathematics education, this monograph is specifically focused on contributions towards the constructs of creativity and giftedness in mathematics. This monograph presents new perspectives for talent development in the mathematics classroom and gives insights into the psychology of creativity and giftedness. The book is aimed at classroom teachers, coordinators of gifted programs, math contest coaches, graduate students and researchers interested in creativity, giftedness, and talent development in mathematics.