The word “critical” in the title of this collection has several meanings. One meaning, as applied to a situation or problem, is “at a point of crisis.” A second meaning is “expressing adverse or disapproving comments or judgments.” A third is related to the verb “to critique,” meaning “to analyse the merits and faults of.” All are contemporarily relevant to mathematics education.

Few would question that the world is in a critical state; the connection with mathematics and mathematics education has been most forcefully delineated by Ubiratan D’Ambrosio (2007):

It is widely recognized that all the issues affecting society nowadays are universal, and it is common to blame, not without cause, the technological, industrial, military, economic and political complexes as responsible for the growing crises threatening humanity. Survival with dignity is the most universal problem facing mankind.

Mathematics, mathematicians and mathematics educators are deeply involved with all the issues affecting society nowadays. But we learn, through History, that the technological, industrial, military, economic and political
complexes have developed thanks to mathematical instruments. And also that mathematics has been relying on these complexes for the material bases for its continuing progress. It is also widely recognized that mathematics is the most universal mode of thought.

Are these two universals conflicting or are they complementary? It is sure that mathematicians and math educators, are concerned with the advancement of the most universal mode of thought, that is, mathematics. But it is also sure that, as human beings, they are equally concerned with the most universal problem facing mankind, that is, survival with dignity.

At the time of writing, the United States is a few weeks into a financial crisis with world-wide ramifications. It is a reasonable question to ask whether this crisis is not only due, mainly, to a failure to apply elementary mathematical principles to financial government but also, partly, to a lack of fiscal sense among many citizens that can be seen as an indictment of their education, including their mathematical education.

Critical judgments on mathematics education are nothing new, but, alongside the maturation of the field of mathematics education itself, they are now concerned with more than internal issues about the nature of teaching and what it is that students take from their mathematics education in terms of technical competence and higher-order thinking. As interest in, and attention to, the historical, cultural, social, and political contexts in which mathematics education is situated have developed, external issues about the circumstances in which children are living, and about the relationships between mathematics education and society have become prominent. The distinction between internal and external is neatly made by Skovsmose’s (2006) question as to whether the leak in the ceiling of a classroom does not constitute a learning obstacle, just as much as some point about, say, the epistemology of rational numbers.

The development of mathematics education as a field has been marked by a broadening from an initial concentration in mathematics itself and psychology to a much broader interaction with human sciences, such as sociology, anthropology, ethnomathematics, gender issues, critical race theory, social history of mathematics, philosophy of mathematics, sociolinguistics, semiotics, and so on. Together with this enrichment of theoretical frameworks has come methodological diversity and liberation.

Critical mathematics educators across the world voice concern about the perceived lack of connection between school mathematics and students’ lives, leading to lack of interest and alienation. They challenge the notion of mathematics and mathematics education as being morally and politically neutral. They question the role of mathematics as a gatekeeper, limiting economic and social advancement. They point to the increasingly nationalistic, and indeed militaristic, tone of much governmental rhetoric (Guts-
tein, in press). All of these major concerns, and many more, are discussed by the contributors to this collection.

The emerging group of practitioners, researchers, and scholars that is evolving critical mathematics education is, above all, characterized by its recognition of the necessity of critiquing the institutions, pedagogical and research practices, and political embeddedness of mathematics education. Such a position is aligned with many other developments, including a new philosophy of mathematics (Ernest, 1991; Tymoczko, 1986) that takes as central the notion of fallibility.

In this brief introduction, we do not attempt to summarize the diversity, depth, and richness of the chapters that follow, but rather, with illustrative examples, we try to convey a sense of the common threads of criticality, in all of the above senses, that they share.

SOURCES AND ORGANIZATION OF THIS BOOK

The book is organized in four sections, namely:

1. Mathematics education: For what and why?
2. Globalization and diversity
3. Mathematics, education, and society
4. Social justice in, and through, mathematics education

The papers in the first section were prepared for Discussion Group 3 at the 11th ICME, organized by Brian Greer and Claude Gaulin. These papers were deliberately kept short, in order to maximize the chances of participants reading them in advance, and related to the specific questions for discussion, namely:

- What are the most productive ways of characterizing “mathematical literacy”?
- Should school mathematics education be dominated by the discipline of mathematics, rather than reflecting the diversity of mathematical practices?
- Can a balance be achieved between a homogeneous, monolithic, globalized curriculum and the diversity of people and forms of knowledge construction and use?
- How should mathematics education prepare people for technology?

The papers in the remaining sections are republished from the electronic *Philosophy of Mathematics Education Journal* created and maintained by Paul Ernest (http://people.exeter.ac.uk/PErnest/).
Like the papers in the Philosophy of Mathematics Education Journal, the chapters in this book are freely available on the Internet, which is the policy adopted by Bharath Sriraman for the journal The Montana Mathematics Enthusiast (www.math.umt.edu/TMME). Entirely voluntary work of this nature, making material available in this way instead of published in overly expensive books, may be considered a form of academic activism. (And see the first monograph in the series to which this book belongs (Sriraman, 2007) on social justice in mathematics education).

MATHEMATICS EDUCATION: FOR WHAT AND WHY?

The International Congress on Mathematical Education is a major quadrennial conference that brings together mathematicians and mathematics educators, between which groups exist considerable tensions. As a generalization, it is probably not unfair to say that mathematicians would tend to answer the question “What is mathematics education for?” by reference to traditional motivations such as the need to produce another generation of scholars to continue developing the discipline of mathematics; the supply of a cadre of scientists and others such as engineers who need strong mathematical competence; as a training in logical thinking and problem solving; as exposure to what is as much a part of cultural heritage as literature or music.

Critical mathematics educators, on the other hand, would go beyond these reasons and argue that mathematics education should provide people with tools to analyse, and act upon, issues important in their lives, in their communities, and to society in general. Further, it is desirable that mathematics education should give people some understanding of the complex, often hidden, roles that mathematics plays in society, “formatting” many aspects of our lives.

The discussion group was planned to confront these different perspectives and open up the issues, and the collection of papers that resulted, and is reproduced here, was assembled accordingly. In addressing the themes of the remaining three sections, they also serve as an introduction to those sections.

GLOBALIZATION AND DIVERSITY

Mathematics and mathematics education are carried on against the background of geopolitical events—globalization, growth of the knowledge economy and the attendant commodification of knowledge and corporification of schools, post-colonialism, struggles over finite resources . . . not to mention wars.
Academic mathematics as a discipline is an international endeavor, with well-developed institutions, publications, and networks of communication and collaboration. To a degree, the same can be said of mathematics education (Bishop, 1992), increasingly so. Atweh (Section 1, this volume) suggests that globalization may not be intrinsically good or evil, but is certainly not value-free or beyond ethical considerations, and presents both challenges and dangers. An obvious danger is that globalization, in effect, becomes Westernization (Sen, 2004, cited by Ernest, Section 2, this volume). Thus, some “Western” scholars share a concern voiced by Clements (1995, p. 3) that: “Over the past 20 years I have often had cause to reflect that it is Western educators who were responsible not only for getting their own mathematics teacher education equation wrong, but also for passing on their errors to education systems around the world.” Bishop (1990) referred to “Western” mathematics as “the secret weapon of cultural imperialism.”

Counter-narratives are being developed. For example, the history of the development of mathematics as written by “the winners” has been challenged by documenting, often uncovering, the contributions of non-European cultures (Joseph, 1992; Powell & Frankenstein, 1997). If mathematics education were just the transmission of the academic canon to a new generation, then world-wide homogeneity of mathematics education would be even greater than it is (Usiskin, 1999). Examples of resistance to homogeneity include post-Apartheid South Africa, where serious efforts have been made to devise mathematics education aims to contribute to improvement of the social and political conditions of the people. Brazil is another country in which mathematics educators have been heavily involved in ethnomathematics (D’Ambrosio, 2006) and in applications of mathematics as activists for social justice (Knijnik, this volume).

MATHEMATICS, EDUCATION, AND SOCIETY

A major theme of the turn from the internal problems of learning and teaching mathematics to consideration of the external historical, cultural, social, and political contexts in which mathematics education takes place is consideration of how analysis of the roles of mathematics in society should guide the education of the children who will become citizens of that society. Thus, in Discussion Group 3 at ICME11, the final question “How should mathematics education prepare people for technology?” was not aimed at standard discussions about how the use of computers can help mathematics teaching/learning but rather to raise issues about the use of technology in contemporary society through the complementary processes of mathematization (application of mathematical models in the control of situations) and demathematization (embedding of mathematics within physical and
symbolic artifacts such that it is hidden in the use of those artifacts) (Gellert and Jablonka, 2007, this volume).

SOCIAL JUSTICE IN, AND THROUGH, MATHEMATICS EDUCATION

A common theme of the quest for social justice within mathematics education has taken the form of analyzing inequities based on gender, class, and ethnic differences (though rarely their interactions). Thus mathematics often acts as a gatekeeper to educational and economic advancement, as the civil rights activist, Robert Moses, has emphasized in characterizing quality mathematics education as a civil right (Moses & Cobb, 2001) (and see Apельbaum & Davila, this volume).

Such questions could be considered as internal. A more recent development has been concentration of external issues—in other words, social justice through mathematics education, providing people with tools for critiquing their own situations and acting on them. In Freire’s terms (adapted for the title of his book by Gutstein (2006)) that means not just “reading” the world but also “writing” it.

Numbers can tell a story very starkly and simply. A fine book for children (and adults) called “If the world were a village” (Smith and Armstrong, 2002) provides proportional statistics that would apply if the world were a village of 100 people. Only 24 always have enough to eat, while 60 are always hungry (26 being severely undernourished), and 16 go to bed hungry at least some of the time.

FINAL COMMENT: ON BEING SELF-CRITICAL

Teachers, scholars, and researchers who consider themselves critical do not forget to turn their critical gaze, on their individual and collective beliefs, attitudes, and actions and to remain open to critique by others. We are aware that as academics located in wealthy Western countries we are privileged both materially and in the freedom and autonomy that academic work still grants us (if only just!). Nevertheless, we hope that by addressing these issues we are helping to raise awareness among mathematics educators and teachers in a way that contributes a little bit to improvements in the teaching and learning of mathematics. We passionately believe in the importance of the enterprise of mathematics education worldwide, without
overestimating the impact that we three editors and the score or so contributors can make.

REFERENCES

