Mathematics and science education have both grown in fertile directions in different geographic regions. Yet, the mainstream discourse in international handbooks does not lend voice to developments in cognition, curriculum, teacher development, assessment, policy, and implementation of mathematics and science in many countries. Paradoxically, in spite of advances in information technology and the “flat earth” syndrome, old distinctions and biases between different groups of researchers persist. In addition, limited accessibility to conferences and journals also contribute to this problem.

The First Sourcebook on Asian Research in Mathematics Education: China, Korea, Singapore, Japan, Malaysia, and India focuses on underrepresented regions of the world and provides a platform for researchers to showcase their research and development in areas within mathematics and science education.
Abstracts of The First Sourcebook on Asian Research in Mathematics Education: China, Korea, Singapore, Japan, Malaysia, and India

Special Supplement to the International Sourcebooks in Mathematics and Science Education

Series Editor:
Bharath Sriraman, The University of Montana
International Sourcebooks in Mathematics and Science Education
Bharath Sriraman, Series Editor

The First Sourcebook on Nordic Research in Mathematics Education: Norway, Sweden, Iceland, Denmark, and Contributions From Finland (2010)
edited by Bharath Sriraman, Christer Bergsten, Simon Goodchild, Gudbjorg Palsdottir, Bettina Dahl Søndergaard, and Lenni Haapasalo

The First Sourcebook on Asian Research in Mathematics Education: China, Korea, Singapore, Japan, Malaysia, and India (2012)
Edited by Bharath Sriraman, Jinfa Cai, Kyeong-Hwa Lee, Fan Lianghuo, Yoshinori Shimuzu, Lim Chap Sam, and K. Subramaniam

The First Sourcebook on Mediterranean and South Central Asian Research in Mathematics and Science Education: Cyprus, Israel, Turkey, Greece, Iran, Pakistan, and Central Asia (in development 2012)
edited by Bharath Sriraman, Constantinos Christou, Röza Leikin, Ahmet Arikan, Constantinos Tzakanis, and Anjum Halai
Abstracts of The First Sourcebook on Asian Research in Mathematics Education: China, Korea, Singapore, Japan, Malaysia, and India

Edited by

Bharath Sriraman
The University of Montana

Jinfa Cai
University of Delaware

Kyeong-Hwa Lee
Seoul National University

Fan Lianghuo
University of Southampton

Yoshinori Shimuzu
University of Tsukuba

Lim Chap Sam
Universiti Sains Malaysia

K. Subramaniam
Tata Institute of Fundamental Research, India

Information Age Publishing, Inc.
Charlotte, North Carolina • www.infoagepub.com
Advisory Board

Ahmet Arikan, Gazi University, Turkey
Marcelo Borba, São Paulo State University, Brazil
Jinfa Cai, University of Delaware
Lim Chapsam, Universiti Sains, Malaysia
Lyn English, Queensland University of Technology, Australia
Viktor Freiman, University of Moncton, Canada
Simon Goodchild, University of Agder, Norway
Gudbjorg Palsdottir, University of Iceland
Guenther Toerner, University of Duisburg-Essen Germany
Doru Stefanescu, University of Bucharest, Romania
K. Subramaniam, Tata Institute of Fundamental Research, Mumbai, India
CONTENTS

CHINA

PART I: CULTURE, TRADITION, AND HISTORY

1. “Zhi Yì Xíng Nán (Knowing Is Easy and Doing Is Difficult)” or Vice Versa? A Chinese Mathematician’s Observation on History and Pedagogy of Mathematics Activities
 Man-Keung Siu .. 000
2. The Study on Application of Mathematics History in Mathematics Education in China
 Zezhong Yang and Jian Wang 000
3. Cultural Roots, Traditions, and Characteristics of Contemporary Mathematics Education in China
 Dianzhou Zhang, Shiqi Li, and Xuhui Li 000

PART II: ASSESSMENT AND EVALUATION

4. Factors Affecting Mathematical Literacy Performance of 15-Year-Old Students in Macao: The PISA Perspective
 Kwok-Cheung Cheung ... 000
5. Has Curriculum Reform Made A Difference in the Classroom? An Evaluation of the New Mathematics Curriculum in Mainland China
 Yujing Ni, Qiong Li, Jinfu Cai, and Kit-Tai Hau 000
PART III: CURRICULUM

6. Early Algebra in Chinese Elementary Mathematics
 Textbooks: The Case of Inverse Operations
 Meixia Ding .. 000

7. The Development of Chinese Mathematics Textbooks
 for Primary and Secondary Schools Since the Twentieth Century
 Shi-hu Lv, Ting Chen, Aihui Peng, and Shangzhi Wang 000

8. Mathematics Curriculum and Teaching Materials in China
 from 1950–2000
 Jianyue Zhang, Wei Sun, and Arthur B. Powell 000

 Jian Liu, Lidong Wang, Ye Sun, and Yiming Cao 000

10. Basic Education Mathematics Curriculum Reform in the Greater Chinese Region: Trends and Lessons Learned
 Chi-Chung Lam, Ngai-Ying Wong, Rui Ding,
 Siu Pang Titus Li, and Yun-Peng Ma 000

PART IV: MATHEMATICAL COGNITION 29

11. Promoting Young Children’s Development of Logico-Math Thinking Through Addition, Subtraction, Multiplication and Division in Operational Math
 Zi-Juan Cheng ... 000

12. Development of Mathematical Cognition in PreSchool Children 33
 Qingfen Hu and Jing Zhang 000

13. Chinese Children’s Understanding of Fraction Concept
 Ziqiang Xin and Chunhui Liu 000

14. Teaching and Learning of Number Sense in Taiwan
 Der-Ching Yang ... 000

15. Chinese Contemporary Investigations of Mathematical Cognitive Learning
 Ping Yu, Wenhuai Yu, and Yingfang Fu 000

16. Chinese Mathematical Processing and Mathematical Brain
 Xinlin Zhou, Wei Wei, Chuansheng Chen, and Qi Dong 000
PART V: TEACHING AND TEACHER EDUCATION

17. Comparing Teachers’ Knowledge on Multidigit Division
 Between the United States and China
 Shuhua An and Song A. An 000

18. Problem Solving in Chinese Mathematics Education:
 Research and Practice
 Jinfa Cai and Bikai Nie and Lijun Ye 000

19. Developing a Coding System for Video Analysis of
 Classroom Interaction
 Yiming Cao, Chen He, and Liping Ding 000

20. Teaching Mathematics Through Problem Solving in
 Alternative Solution Methods: An Exploratory Study
 Shin-Yi Lee .. 000

21. Mathematical Problem-Posing Instruction: From
 Research-Based Tasks, Teachers’ Professional Growth to
 Students’ Learning
 Shuk-kwan S. Leung 000

22. Mathematical Discourse in Chinese Classrooms:
 An Insider’s Perspective
 Ida Ah Chee Mok, Xinrong Yang, and Yan Zhu 000

23. Reviving Teacher Learning: Chinese Mathematics Teacher
 Professional Development in the Context of Educational
 Reform 57
 Lynn W. Paine, Yanping Fang, and Heng Jiang 000

24. The Status Quo and Prospect of Research on Mathematics
 Education for Ethnic Minorities in China
 Tang Hengjun, Peng Aihui, Chen Bifen, Yu Bo,
 Huang Yanping, and Song Naiqing 000

25. Achieving Instructional Coherence in Classroom
 Instruction: A Discourse Perspective
 Tao Wang and Jinfa Cai 000

 Teaching: Role of Subject Related Training, Mathematic
 Teaching Experience, and Current Curriculum Study in
 Shaping Its Quality
 Jian Wang .. 000
27. Why Always Greener on the Other Side?: The Complexity of Chinese and U.S. Mathematics Education
 Thomas E. Ricks ... 000

PART VI:
TECHNOLOGY

 Chunlian Jiang, Jingzhong Zhang, and Xicheng Peng 000

29. E-Learning in Mathematics Education
 Siu Cheung Kong .. 000

KOREA

30. Korean Research in Mathematics Education
 Kyeong-Hwa Lee, Jennifer M. Suh, Rae Young Kim,
 and Bharath Sriraman .. 000

31. A Review of Philosophical Studies on Mathematics Education
 Jin Young Nam ... 000

32. Mathematics Curriculum
 Kyungmee Park .. 000

33. Mathematics Textbooks
 Jeong Suk Pang .. 000

34. Using the History of Mathematics to Teach and Learn Mathematics
 Hye Won Chang .. 000

35. Perspectives on Reasoning Instruction in the Mathematics Education
 Bo Mi Shin ... 000

36. Mathematical Modeling
 Yeong Ok Chong .. 000

37. Gender and Mathematics
 Eun Jung Lee .. 000

38. Mathematics Assessment
 Gwi Soo Na ... 000

39. Examining Key Issues in Research on Teacher Education
 Goo Yeon Kim ... 000
40. Trends in the Research of Teachers’ Beliefs About Mathematics Education
 Dong-Hwan Lee .. 000

SINGAPORE

 Chan Chun Ming Eric .. 000

42. Research on Singapore Mathematics Curriculum and Textbooks: Searching for Reasons Behind Students’ Outstanding Performance
 Yan Zhu and Lianghuo Fan ... 000

43. Teachers’ Assessment Literacy and Student Learning in Singapore Mathematics Classrooms
 Kim Hong Koh ... 000

44. A Theoretical Framework for Understanding the Different Attention Resource Demands of Letter-Symbolic Versus Model Method
 Swee Fong Ng ... 000

45. A Multidimensional Approach to Understanding in Mathematics Among Grade 8 Students in Singapore
 Boey Kok Leong, Shaljan Areepattamannil, and Berinderjeet Kaur 000

MALAYSIA

46. Mathematics Education Research in Malaysia: An Overview
 Chap Sam Lim, Parmjit Singh, Liew Kee Kor, and Cheng Meng Chew .. 000

47. Research Studies in the Learning and Understanding of Mathematics: A Malaysian Context
 Parmjit Singh and Teoh Sian Hoon 000

48. Numeracy Studies in Malaysia
 Munirah Ghazali and Abdul Razak Othman 000

49. Malaysian Research in Geometry
 Cheng Meng Chew .. 000
CONTENTS

50. Research in Mathematical Thinking in Malaysia: Some
 Issues and Suggestions
 Shafia Abdul Rahman ... 000

51. Studies About Values in Mathematics Teaching and
 Learning in Malaysia
 Sharifah Norul Akmar Syed Zamri and Mohd Uzi Dollah 000

52. Transformation of School Mathematics Assessment
 Tee Yong Hwa, Chap Sam Lim, and Ngee Kiong Lau 000

53. Mathematics Incorporating Graphics Calculator
 Technology in Malaysia
 Liew Kee Kor .. 000

54. Mathematics Teacher Professional Development in
 Malaysia
 Chin Mon Chiew, Chap Sam Lim, and Ui Hock Cheah 000

55. Mathematics Education Research in Japan:
 An Introduction
 Yoshinori Shimizu ... 000

56. A Historical Perspective on Mathematics Education
 Research in Japan 137
 Naomichi Makinae .. 000

57. The Development of Mathematics Education as a Research
 Field in Japan
 Yasuhito Sekiguchi ... 000

 Keiko Hino ... 000

59. Learning Algebra and Use of Literal Symbols
 Toshiakira Fujii ... 000

60. Proving as an Explorative Activity in Mathematics
 Education 151
 Mikio Miyazaki and Taro Fujita 000

61. Developments in Research on Mathematical Problem
 Solving in Japan 155
 Kazuhiro Nunokawa ... 000

62. Research on Teaching and Learning Mathematics With
 Information and Communication Technology
 Yasuyaki Iijima ... 000

JAPAN
63. “Inner Teacher”: The Role of Metacognition in Learning Mathematics and Its Implication to Improving Classroom Practice
 Keiichi Shigematsu .. 000

64. Cross-cultural Studies on Mathematics Classroom Practices
 Yoshinori Shimizu ... 000

65. Systematic Support of Life-Long Professional Development for Teachers Through Lesson Study 169
 Akihiko Takahashi ... 000

INDIA

 Farida Abdulla Khan and Jamia Millia Islamia 000

67. Curriculum Development in Primary Mathematics: The School Mathematics Project
 Amitabha Mukherjee and Vijaya S. Varma 000

68. Intervening for Number Sense in Primary Mathematics
 Usha Menon .. 000

69. Some Ethical Concerns in Designing Upper Primary Mathematics curriculum: A report From the Field 193
 Jayasree Subramanian, Sunil Verma, and Mohd.Umar 000

70. Students’ Understanding of Algebra and Curriculum Reform
 Rakhi Banerjee .. 000

71. Professional Development of In-Service Mathematics Teachers in India
 Ruchi S. Kumar, K. Subramaniam, and Shweta Naik 000

72. Insights Into Students’ Errors Based on Data From Large-Scale Assessments
 Aaloka Kanhere, Anupriya Gupta, and Maulik Shah 000

73. Assessment of Mathematical Learning: Issues and Challenges
 Shailesh Shirali .. 000

74. Technology and Mathematics Education: Issues and Challenges
 Jonaki B. Ghosh ... 000
75. Mathematics Education in Precolonial and Colonial South India
 Senthil Babu D .. 000

76. Representations of Numbers in the Indian Mathematical Tradition of Combinatorial Problems
 Raja Sridharan and K. Subramaniam 000