Administration and Staff

Patrick Secor

Patrick Secor

Assistant Professor

Phone: (406) 243-2614
Office: HS513C
Personal Website
Curriculum Vitae


BIOM450/451 Microbial Physiology


Postdoctoral Fellow, University of Washington

PhD, Montana State University

BS, Montana State University

Research Interests

Bacteriophage, host-pathogen interactions, vaccine development

Selected Publications

For a complete list and links to my publications, see this link.

Burgener et al., Filamentous bacteriophages are associated with chronic Pseudomonas lung infections and antibiotic resistance in cystic fibrosis. Science Translational Medicine  17 Apr 2019:Vol. 11, Issue 488, eaau9748

JM Sweere, JD Van Belleghem, H Ishak, MS Bach, M Popescu, V Sunkari, et. al., Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. 2019. Science 363 (6434), eaat9691

PL Bollyky, PR Secor. The Innate Sense of Bacteriophages. 2019. Cell Host & Microbe 25 (2), 177-179

Secor P.R., et al. Entropically-driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa. (2018) Proc Natl Acad Sci USA, DOI:10.1073/pnas.1806005115

Jorth, P.A., et al., (2017) Evolved aztreonam resistance is multifactorial and can produce hypervirulence in Pseudomonas aeruginosa. mBio, Oct. 2017, vol. 8 no. 5 e00517-17.

Nazik, H., et al., (2017) Pseudomonas Phage Inhibition of Candida albicans. Microbiology, 2017 Nov;163(11):1568-1577. doi: 10.1099/mic.0.000539.

Secor PR, et al., Effect of acute predation with bacteriophage on intermicrobial aggression by Pseudomonas aeruginosa. PLoS One. 2017 Jun 16;12(6):e0179659. doi: 10.1371/journal.pone.0179659. 

Secor, P.R., et al., (2017) Filamentous bacteriophage produced by Pseudomonas aeruginosa alters the inflammatory response and promotes non-invasive infection in vivo. Infection and Immunity, vol. 85, issue 1. Featured on journal cover.

Penner, J.C., et al., (2016) Pf4 Bacteriophage Produced by Pseudomonas aeruginosa Inhibits Aspergillus fumigatus Metabolism via Iron Sequestration. Microbiology, 162, 1583-1594.

Secor, P.R., et al., (2016) Biofilm assembly becomes crystal clear – filamentous bacteriophage organize the Pseudomonas aeruginosa biofilm matrix into a liquid crystal. Microbial Cell, 3(1): 49-52. Featured on journal cover.

Secor, P.R., et al., (2015) Filamentous Bacteriophage Promote Biofilm Assembly and Function. Cell Host & Microbe, 18(5): 549-59.

Jennings L.K., et al., (2015) Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci USA, 112(36): 11353-8.

Secor, P. R., et al., (2012) Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression, PLoS One 7(7) e40973.

Secor, P. R., et al., (2011) Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, MAPK phosphorylation, and cytokine production in human keratinocytes. BMC Microbiol, 11:143.

Kirker, K.R., et al., (2009) Loss of viability and induction of apoptosis in human keratinocytes exposed to Staphylococcus aureus biofilms in vitro. Wound Repair Regen, 17(5): 690-9.

Dowd, S.E., et al., (2008) Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol, 8: 43.

James, G.A., et al.,. (2008) Biofilms in chronic wounds. Wound Repair Regen, 16(1): 37-44.