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Abstract: The use of adaptive optics (AO) in ground-based astronomy is
becoming increasingly mainstream. While classical methods, such as de-
convolution, remove the blur in an image only after it has been collected,
AO systems seek to remove phase error in incoming wavefronts prior to
image formation, resulting in higher resolution images. If the phase error
is known, it can be removed via the creation of a counter wavefront using,
e.g., a deformable mirror. In the AO systems used on ground-based tele-
scopes, an estimate of the phase error is typically obtained by solving an
inverse problem involving measurements of the wavefront gradient. The
standard approach for obtaining phase estimates from measurements of
its gradient is least squares. However, a more robust solution can be ob-
tain if a minimum variance, or penalized least squares, approach is taken
instead. In this paper, we will perform a theoretical analysis of these
approaches in a continuous, i.e. function space, setting.
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Figure 1: Diffraction limited PSF (on the left), and PSF resulting from phys-
ically realistic phase error (on the right).

1 Introduction

The classical approach for removing blur from an image d collected by a
ground-based telescope is to solve a deconvolution problem of the form

d(x, y) =

∫

R2

k(x, y; ξ, η)f(ξ, η) dξdη, (1)

for f given the point spread function (PSF) k. This problem has seen, and
continues to see, a great deal of attention in the mathematical commu-
nity; a large body of theoretical analysis and computational methodology
has been developed for its solution (see Vogel [11] and Tikhonov et al
[12]). What makes solving (1) difficult, but also mathematically inter-
esting, is that it is an ill-posed problem. However for the astronomer,
mathematical interest is a secondary consideration. Thus it should be
no surprise that astronomers have sought image enhancement techniques
that involve the solution of well-posed problems instead. The recent and
resounding success of adaptive optics (AO) (see Beckers [2] for a survey
of AO methods) is proof that astronomers have been successful in this
endeavor.

In order to properly motivate AO, we introduce the spatially invariant,
Fourier optics PSF model (see Roggeman and Welch [10])

k[φ](x, y) =
∣∣F−1

{M(x, y)eiφ(x,y)
}∣∣2 . (2)

HereM(x, y) is the telescope’s pupil indicator function, i.e. is 1 inside the
pupil and 0 otherwise; and the function φ(x, y) denotes the phase error,
or simply the phase, and is determined by the deviation from planarity of



the incoming wavefronts of light at the point (x, y). In Figure 1, we plot
(2) in the diffraction limited case, i.e. when φ = 0, and with a nonzero
φ generated by a physically realistic model. Note the negative effect of
nonzero phase error on the right-hand side PSF.

The job of the AO system is to remove the phase error from incoming
wavefronts by introducing a counter wavefront φDM via, e.g., a deformable
mirror (see Beckers [2]). Assuming the PSF has the form (2), the phase
corrected PSF will have the form

k[φ + φDM](x, y) =
∣∣F−1

{M(x, y)ei(φ+φDM)(x,y)
}∣∣2 . (3)

Ideally, the deformable mirror created counter wavefront satisfies φDM =
−φ, so that the resulting PSF has the diffraction limited form

k[0](x, y) =
∣∣F−1 {M(x, y)}

∣∣2 , (4)

in which case the diffraction limited image

dDL(x, y)
def
=

∫

R2

k[0](x− ξ, y − η)f(ξ, η) dξdη, (5)

– the astronomers gold standard – is what is seen by the telescope. In
practice, however, an accurate approximation of −φ suffices for near
diffraction limited imaging.

In ground-based astronomy, phase estimates are typically obtained
from measurements of the wavefront gradient, in which case, the following
inverse problem must be solved for φ:

g = M∇φ + n, on Ω. (6)

Here Ω is the computational domain, M is the pupil indicator function

mentioned above, g denotes the measured gradient, ∇ =
(

∂
∂x

, ∂
∂y

)T

is the

gradient operator, and n denotes measurement error.
Before continuing, we note that there exist techniques for estimating

phase that do not use measurements of the gradient. Important exam-
ples include curvature sensing, self-referencing interferometry, normalized
cross-correlation, and phase diversity (see Hardy [6] and Roddier [9] for
details). However, in this paper, we focus on problem (6).

The classical approaches for solving (6) (see Fried [3], Herrman [7],
and Hudgin [8]) correspond, in the continuous setting, to the problem of
minimizing the least squares functional

J0(φ)
def
=

1

2

∫

Ω

(M∇φ− g)2dx dy. (7)



It has been observed, however, that more accurate and stable phase
estimates can be obtained if the minimum variance estimate is computed
instead. Minimum variance estimation assumes a prior probability den-
sity function on the unknown phase φ. In astronomical adaptive optics,
the standard choice of prior is the Gaussian probability density

pφ(φ) = exp

{
1

2

∫

Ω

(
C
−1/2
φ φ

)2

dx dy

}
, (8)

where the covariance operator Cφ is given by the Kolmogorov atmospheric
turbulence model

Cφ = F∗Λ(ω)F , (9)

where F and F∗ are the two-dimensional Fourier and inverse Fourier
transforms respectively, and

Λ(ω) =
c0

(|ω|2 + 1/L2
0)

11/6
. (10)

Here L0 is the turbulence outer-scale, which prevents an unphysically
infinite amount of energy at the origin, and c0 is the phase screen strength
(see Roggeman and Welch [10]). However in order to facilitate faster
computations, Ellerbroek [4] proposed approximating Cφ in (9), (10) by

C−1
φ = (1/c0)∆

2. (11)

Here the Kolmogorov power spectral density (10) is approximated as fol-
lows: set L0 = ∞ and note that

|ω|−11/3 ≈ |ω|−4.

Approximation (11) is then obtained by noting that the biharmonic, or
squared Laplacian, operator ∆2 has spectrum |k|4. When the prior is
given by (8), (11), and n in (6) is assumed to be Gaussian white noise
with zero mean and variance σ2, the minimum variance estimate is the
minimizer of the functional

Jσ(φ)
def
=

1

2

∫

Ω

(M∇φ− g)2dx dy +
σ2

c0

∫

Ω

(∆φ)2dxdy. (12)

A third approach for obtaining phase reconstructions is given in Bard-
sley [1] and is derived from the Euler-Lagrange equations for (12). It is
given in the continuous setting as follows: first compute the minimizer
φMNLS of (7) with minimum L2(Ω) norm; then compute the minimizer of
the functional

∫

Ω

(φ− φMNLS)
2 dx dy + (σ2/c0)

∫

Ω

(∇φ)2 dx dy, (13)



This approach was shown to be effective in practice in Bardsley [1]. Due
to the form of (13), we call this approach gradient denoised least squares
(GDLS).

Our goal in this paper is to perform a theoretical analysis of the prob-
lems of minimizing the functionals (7), (12), and (13). In particular, we
will show that each is a well-posed problem, and hence, is stable with
respect to both modelling and stochastic errors. Well-posedness results
are not only academic since in practice the mathematical and statistical
models used are only approximate. We will also prove that the minimiz-
ers of (12) and (13) converge as σ2 → 0; note that σ2 = 0 corresponds
to complete confidence in model (6). Finally, we will argue that the min-
imizers of (12) and (13) can be expected to more closely resemble true
atmospheric phase profiles than do the minimizers of (7).

2 Theoretical Analysis

We begin by stating our assumptions and making necessary definitions.
We assume that Ω is open and bounded with smooth boundary. In our
analysis, we will make reference to the following Sobolev spaces

H1
0 (Ω) =

{
φ ∈ H1(Ω) | φ = 0 on ∂Ω)} ,

and

H2
0 (Ω)

def
=

{
φ ∈ H2(Ω)

∣∣∣∣ φ =
∂φ

∂x
=

∂φ

∂y
= 0 on ∂Ω

}
,

where

H1(Ω) =

{
φ ∈ L2(Ω)

∣∣∣∣
∂φ

∂x
,
∂φ

∂y
∈ L2(Ω)

}
,

and

H2(Ω)
def
=

{
φ ∈ L2(Ω)

∣∣∣∣
∂φ

∂x
,
∂φ

∂y
,
∂2φ

∂x2
,

∂2φ

∂x∂y
,
∂2φ

∂y2
∈ L2(Ω)

}
. (14)

The derivatives of φ above are meant in the weak sense (see Evans [5]).
Atmospheric turbulence statistics suggest (see Roggeman and Welch

[10]) that assuming that the true phase φtrue ∈ H2(Ω) is accurate. Noting,
furthermore, that any constant offset in φtrue will have no effect on image
quality, we can make the additional assumption that the offset is zero
and hence that φtrue = 0 on ∂Ω. It is also the case in practice that the
linear off-set, or tip-tilt, in φtrue is estimated and corrected in a separate
process (see Beckers [2]), allowing us to assume that the tip-tilt is zero,
and hence, that ∂φtrue/∂dx = ∂φtrue/∂dy = 0 on ∂Ω. Taking all of these
observation together yields φtrue ∈ H2

0 (Ω), which motives our desire to
obtain phase estimates contained in H2

0 (Ω).



Finally, we note that a problem is well-posed provided it admits a
unique solution that depends continuously on the data given in the prob-
lem. In the context of wavefront reconstruction, results of well-posedness
for a particular approach imply that even if wavefront gradient measure-
ments contain both modelling and stochastic errors, the corresponding
wavefront estimate will be stable with respect to these errors.

Our first theoretical result deals with the least squares solution with
minimum L2(Ω) norm. This approach for wavefront reconstruction was
first suggested in Herrman [7].

Theorem 1: The problem of computing the minimizer of the func-
tional J0 with minimum L2(Ω) norm in H1

0 (Ω) is well-posed provided
∇ · g ∈ L2(Ω).

Proof. First, we note that ∆φ = f with homogeneous Neumann boundary
conditions has weak solutions in H1(Ω) provided

∫
Ω

f dx dy ∈ L2(Ω) (see
Evans [5]). Thus, it follows that since ∇·g ∈ L2(Ω) and

∫
Ω
∇·g dx dy = 0

(Gauss’ Theorem), weak solutions of

∇ · (M∇φ) = ∇ · g on Ω,
∂φ/∂~n = 0 on ∂Ω,

(15)

exist in H1(Ω). They also happen to be minimizers of J0. Since the L2(Ω)
norm is strongly convex and the minimizers of J0 form a convex set, a
minimizer of J0 with minimum L2(Ω) norm, which we will denote φMNLS,
exists, is unique, and satisfies φMNLS = 0 on ∂Ω. Thus φMNLS ∈ H1

0 (Ω).
Finally, since the nonzero eigenvalues of the operator ∇ · M∇ are

bounded away from zero, the minimum norm solution depends continu-
ously on the data g, where perturbations in g must are measured with
the H1(Ω) norm. Thus the problem is well-posed as desired.

Remark: We note that while the computation of the minimum norm
least squares solution is well-posed, φMNLS is not guaranteed to lie in
H2

0 (Ω), which we have deemed to be desirable.

Minimizers of Jσ are weak solutions of its Euler-Lagrange PDE. To
obtain this PDE, we compute the first variation of Jσ. Suppose φ is an in-
finitely differentiable minimizer of (12) satisfying the boundary conditions



φ = ∂φ/∂~n = 0. Then, using integration by parts, we have

0 =
d

dτ
Jσ(φ + τψ)

∣∣∣∣
τ=0

,

= 2

∫

Ω

〈(M∇φ− g),∇ψ〉 dx +
σ2

c0

∫

Ω

∆φ∆ψ dx,

= 2

∫

Ω

ψ

(
−∇ · (M∇φ) +

σ2

c0

∆2φ +∇ · g
)

dx dy, (16)

for all ψ ∈ H2
0 (Ω). Thus

−∇ · (M∇φ) + (σ2/c0)∆
2φ = −∇ · g, on Ω (17)

is the Euler-Lagrange equation for (12). The operator ∆2 is known as the
biharmonic.

Our task now is to show that the problem of minimizing (12) on H2
0 (Ω)

is well-posed for all σ2 > 0; that is, for every σ2 > 0, (12) has a unique
minimizer in H2

0 (Ω) that depends continuously on the data g.

Theorem 2: The problem of computing a minimizer for Jσ in H2
0 (Ω)

is well-posed for σ2 > 0, provided ∇ · g ∈ L2(Ω).

Proof. First, we show that there exists a unique minimizer of Jσ. A
similar computation to that above yields

d2

dξdτ
Jσ(φ + τψ + ξψ)

∣∣∣∣
τ,ξ=0

= 2

∫

Ω

(〈M∇ψ,∇ψ〉+ (σ2/c0)(∆ψ)2) dx dy. (18)

Since ∆ has a trivial null-space on H2
0 (Ω) with eigenvalues bounded away

from zero, the functional on the right-hand side in (18) is strictly positive
on H2

0 (Ω) when σ2 > 0. Thus Jσ is a strongly convex functional on H2
0 (Ω).

Furthermore, Jσ(φ) →∞ whenever ‖φ‖H2
0 (Ω) →∞, and hence, Jσ is also

coercive on H2
0 (Ω). Existence and uniqueness of solutions then follows

from the fact that strictly convex, coercive functions on a Hilbert space
have a unique minimizer (see Vogel [11, Theorem 2.30]).

The fact that this minimizer depends continuously on g follows imme-
diately from an appeal to (17) together with the fact that the eigenvalues
of the biharmonic operator ∆2 are bounded away from zero on H2

0 (Ω).
Note that since ∇ · g appears on the right-hand side in (17), changes in g
must be measured using H1(Ω) norm.



Remark: Thus the minimum variance estimate has the desired smooth-
ness properties.

It is also important to determine what the minimizers of Jσ converge
to as σ2 → 0+.

Theorem 3: Let φσ be the minimizer of Jσ. Then as σ2 → 0+, φσ

converges to the weak solution of (15), i.e. the minimizer of J0, that
minimizes

∫
Ω
(∆φ)2 dx dy.

Proof. Let φ0 be a weak solution of (15) in H2
0 (Ω). Then Jσ(φ0) → J0(φ0),

and hence, Jσ(φ0) ≥ Jσ(φσ) ≥ J0(φ0) implies Jσ(φσ) → J0(φ0). Now,
using the above derivative computations, we expand Jσ in a Taylor series
about φσ to obtain

Jσ(φ0)− Jσ(φσ) = Jσ(φσ + (φ0 − φσ))− Jσ(φσ),

=

∫

Ω

(M∇(φ0 − φσ))2 dx dy

+
σ

c0

∫

Ω

(∆(φ0 − φσ))2 dx dy.

Since Jσ(φ0)− Jσ(φσ) converges to zero as σ → 0+, we have

M∇(φ0 − φσ) → 0,

and hence, φσ converges to a weak solution of (15), which we will denote
φ∗.

We now show that φ∗ is the weak solution of (15) minimizing ‖∆φ‖2
2.

For this, we consider the constrained problem

min
φ

1

2

∫

Ω

(∆φ)2 dx dy s.t.

∫

Ω

(M∇φ− g)2 dx dy ≤ C, (19)

for φ ∈ H2
0 (Ω), which has Karush-Kuhn-Tucker conditions with weak

form ∫

Ω

(∆φ)2 dx dy + λ

∫

Ω

(M∇φ− g)2 dx dy = 0, (20)

λ

(∫

Ω

(M∇φ− g)2 dx dy − C

)
= 0, (21)

and λ > 0. Since the objective function in (19) is strictly convex on
H2

0 (Ω), and the constraint function is convex, if φ and λ satisfy (20), (21)
then φ is the unique solution of (19). Finally, as C → 0 in (21) it must
be that λ →∞ in (20), which corresponds to σ2 → 0+ in (12). Thus we
have that as σ2 → 0+, φσ converges to a solution of (19) with C = 0,
which is what we wanted to show.



Remarks:

1. Note that the least squares solution that minimizes
∫
Ω
(∆φ)2 dx dy

must live in H2
0 (Ω) and will therefore be a strong solution of (15).

Thus for exact data this solution will coincide with φtrue.

2. Results analogous to Theorems 1, 2, and 3 can be obtained if in
(8), Cφ is defined by (9), (10) instead. Note that Cφ is positive def-
inite with eigenvalues bounded away from zero. The corresponding
minimum variance estimates will then converge to the weak solu-
tion of (15) that minimizes the prior probability density (8) with
Cφ defined by (9), (10).

We finish with an analysis of the GDLS method discussed in the in-
troduction. Suppose that the hypothesis of Theorem 1 hold, and define
φσ

GDLS to be the minimizer of (13).

Theorem 4: The problem of computing φσ
GDLS ∈ H2

0 (Ω) is well-posed
provided ∇ · g ∈ L2(Ω). Furthermore, as σ2 → 0+, φσ

GDLS converges
to the weak solution of (15), i.e. the minimizer of J0, that minimizes∫
Ω
(∆φ)2 dx dy.

Proof. We begin by noting that from Evans [5, Problem 6.6.4] it follows
that since φMNLS ∈ H1

0 (Ω), the minimizer of (13), which is unique, is also
the strong solution of

(σ2/c0)∆φ + φ = φMNLS, ∂φ/∂~n = 0, (22)

and is therefore contained in H2
0 (Ω).

Since the eigenvalues of the operator (σ2/c0)∆ + I are bigger than or
equal to one, φσ

GDLS depends continuously on φMNLS. Thus solving (22),
or, equivalently, minimizing (13), is well-posed. The well-posedness of the
computation of φσ

GDLS then follows from the fact that the computation of
φMNLS is well-posed, which we proved in Theorem 1.

Arguments analogous to those found in the proof of Theorem 3 yield
the desired convergence result.

Remark: The fact that GDLS solutions are contained in H2
0 (Ω) and

converge to the same least squares solution when σ → 0+ as do the
minimum variance solutions, makes it a desirable approach.

3 Conclusions

We have presented a theoretical analysis of several methods for wavefront
reconstruction that are meant for use in adaptive optics (AO) systems in



ground base astronomy. Our focus has been on the wavefront reconstruc-
tion problem in which the data consists of measurements of the wavefront
gradient.

Several methods have been proposed for the solution of this problem.
The classical approach involves solving a least squares problem, whereas
a more stable and accurate approach results if a minimum variance, or
penalized least squares, approach is taken instead. We also present, and
analyze, a method in which the gradient denoised least squares solution
is computed.

Our results show that each approach is well-posed, though in the least
squares case, this required the computation of the solution with minimum
L2(Ω) norm. Well-posedness is important because then we know that
these methods are stable with respect to measurement and modelling
errors.

We also showed that both the minimum variance and GDLS solutions
are contained in H2

0 (Ω), which is where we argued the true phase should
lie. The least squares solutions, on the other hand, can only be guaranteed
to lie in H1

0 (Ω). This gives further motivation for the use of the minimum
variance and GDLS methods.

Finally, we showed that as the parameter σ2 → 0+, the minimum
variance and GDLS solutions converge to the same least squares solution.
Given the proven effectiveness of minimum variance estimation together
with the fact that GDLS yields very computationally efficient estima-
tion schemes, this suggests that GDLS is an approach worthy of further
consideration for use in operational AO.
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